TARGET MATHEMATICS by:- AGYAT GUPTA

Page 1 of 4

Code No. Series AG-FA

- Please check that this question paper contains 4 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 30 questions.

General Instructions: -

- **1.** All questions are compulsory.
- 2. The question paper consists of 30 questions divided into three sections A, B ,C and D . Section A contains 10 questions of 1 marks each, Section B is of 5 questions of 2 marks each, Section C is of 10 questions of 3 marks each and Section D is of 5questions of 6 marks each.
- **3.** Write the serial number of the question before attempting it.
- 4. If you wish to answer any question already answered, cancel the previous answer.
- 5. In questions where internal choices is provided. You must attempt only one choice.

Pre-Board Examination 2009 -10

	e: 3 hrs.	M.M.: 80
	CLASS – X MAT	HEMATICS
	Section A	
Q.1	Find n if $140 = 2^n x 5 x 7$	
Q.2	If the sum of zeros of the polynomial $2x^3 - kx^2 + 4x - 5$ is 6, find	l value of k .
Q.3	In an A.P. if common difference $d = 6$, find $a_5 - a_{11}$.	
Q.4	If $(\cos ec\theta - \sin \theta)(\sec \theta - \cos \theta)(\tan \theta + \cot \theta) = k$, find the value	e of k.
Q.5	Find the perimeter of quadrant of a circle whose circumference is	s 22 cm.
Q.6	A card is drawn from a deck of 52 cards, find the probability that	t the card drawn is a honour card.
Q.7	In the formula of mode of a grouped data, Mode = 1 + $\left\{\frac{f_1 - f_0}{2f_1 - f_0}\right\}$	$\left[-\frac{h}{f_2}\right] \times h$, where symbols have their
	usual meaning, what does f ₀ represent.	
Q.8	In a trapezium ABCD, AB CD and the diagonals intersect ea	ach other at O. If $AO = (x - 1) cm$,
	OC = (x + 6) cm, OD = (x + 4) CM and BO = (X - 2) cm, find the set of the set	ne value of x.
Q.9	If PA and PB are two tangents from external point P to a circle v	with centre O and angle $APB = 35^{\circ}$
	find the angle OAB.	

TMC/D/79/89

Resi.: D-79 Vasant Vihar : Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164

 $\label{eq:premier} \mbox{PREMIER INSTITUTE for X, $XI & $XII . ©$ publication of any part of this paper is strictly prohibited..}$

This document was created using

Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

To remove this message, purchase the product at www.SolidDocuments.com

P.T.O.

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 2 of 4					
Q.10	The graph of $y=f(x)$ is given. Find the number of zeroes of $f(x)$.					
	Section B					
Q.11	If the sum of the squares of the polynomial $x^2 - 8x + k$ is 40, find the value of k.					
Q.12	Find the value of sin 60° geometrically.					
Q.13	Find the probability that the card drawn from deck of 52 cards is (i) red card and ace (ii) neither					
	queen nor black card (iii) face card or king (iv) face card and diamond.					
	OR					
	Find the probability of getting 53 Sunday and Monday in a leap year.					
Q.14	Find the relation between x and y if the points (x,y) , $(1,2)$ and $(7,0)$ are collinear.					
Q.15	If all sides of a parallelogram touch a circle, show that parallelogram is a rhombus.					
	Section C					
Q.16	Prove that $1/\sqrt{3}$ is irrational number.					
Q.17	If the polynomial $6x^4 + 8x^3 - 5x^2 + ax + b$ is exactly divisible by the polynomial $2x^2 - 5$, then find					
	value of a and b.					
Q.18	, , are the zeroes of the cubic polynomial $x^3 - 12x^2 + 44x + c$. If , , are in A. P., find the					
	value of c.					
	OR					
	Three numbers are in the ratio 3: 7: 9. If 5 is subtracted from the second, the resulting numbers are					
	in A.P. Find the original numbers.					
Q.19	Determine graphically the co-ordinate of the vertices of the triangle, the equations whose sides are: y = 0, $2x - y + 6 = 0$, $4x + 5y = 16$.					
Q.20	Solve $(a + 2b)x + (2a - b)y = 2$, $(a - 2b)x + (2a + b)y = 3$.					
Q.21	In figure, a crescent is formed by two circles which touch at A. C is the centre of the large circle.					
	The width of crescent at BD is 9 cm and at EF is 5 cm. Find the area of the shaded region.					
	or Find the area of the unshaded region in Fig. if the perimeter of the equilateral triangle is 42cm.					
TMC/D/7	9/89 2 P.T.O.					

2

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony 217922630601(0) Mobile: 9425109601:9907757815 (P): 9300618521:9425110860(0):99

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

(=

To remove this message, purchase the product at www.SolidDocuments.com

	TARGET	MATHEM	ATICS by:-	AGYAT G	UPTA F	Page 3 of 4				
Q.22	Draw a ABC with side BC = 7cm, $\angle B=45^{\circ}$, $\angle A=105^{\circ}$. Then construct a whose sides are 4/3									
	times the corresponding sides of ABC.									
Q.23	The vertices of a triangle are $(2,a)$, $(1,b)$ and $(c^2,-3)$,									
C										
		(i) Prove that its centroid cannot lie on the y-axis.(ii) Find the condition that the centroid may lie on the x-axis.								
Q.24										
Q.27	If $a \sin^3 x + b \cos^3 x = \sin x \cos x$ and $a \sin x - b \cos x = 0$ prove that $a^2 + b^2 = 1$.									
		01	•							
	If $\cos ec\theta - \sin \theta = l$ and $\sec \theta - \cos \theta = m$, prove that $l^2m^2(l^2 + m^2 + 3) = 1$.									
Q.25	The vertices of	The vertices of a PQR are P (4, 6), Q (1, 5) and R (7, 2). A line is drawn to intersect sides PQ as								
	DD at S and T a		h that PS PT	1 Calculate th	a area of the	DCT and some				
	PR at S and T respectively, such that $\frac{PS}{PQ} = \frac{PT}{PR} = \frac{1}{4}$. Calculate the area of the PST and compare is									
	with the area of PQR.									
			Section D							
Q.26	Find the mean, i	median and mod								
X •20	Class	0-100	100-200	200-300	300-400	400-500]			
	Interval	6	0	15	12	0	-			
Q.27	Frequency6915128Prove that the ratio of the areas of two similar triangles is equal to the ratio of square of their									
	corresponding sides.									
	Using the above, prove the following: In a ABC, XY BC and it divides ABC into two parts									
	equal in area. Prove that $\frac{BX}{AB} = \frac{\sqrt{2}-1}{\sqrt{2}}$									
0.00				d flying of a dist		an him at an an	~1~			
Q.28	A boy standing on a horizontal plane finds a bird flying at a distance of 100m from him at an angle of elevation 30°. A girl standing on the roof of 20m high building finds the angle of elevation of the									
	same bird, at the same time, to be 45°. Both the boy and the girl are on opposite sides of the bird.									
	Find the distance of bird from the girl.									
	The angle of elevation of a cloud from a point 200m above the lake is 30° and the angle of									
0.00	depression of the reflection of the cloud in the lake is 60°. Find the height of the cloud.									
Q.29	A train overtakes two persons who are walking in the same direction in which the train is going, at									
	the speed of 2 km/hr and 4 km/hr and passes them completely in 9 and 10 seconds respectively									
	-		Find the length and speed of the train.							
	Find the length	-								
Q.30	Find the length	-		ase and upper po	ortion is remove	d. If the curved	1			
Q.30	Find the length	s cut by a plane	parallel to the b							

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

This document was created using

(=

F

To remove this message, purchase the product at www.SolidDocuments.com

TARGET MATHEMATICS by:- AGYAT GUPTA Page 4 of 4

or

A sector of a circle of radius 12 cm has the angle 120^{0} . It is rolled up so that two bounding radii are joined together to form a cone. Find the volume of the cone.

TMC/D/79/89

4

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII. © publication of any part of this paper is strictly prohibited..

Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

This document was created using

.

To remove this message, purchase the product at www.SolidDocuments.com